이론

Computer Science/AI

[AI 이론] 인공지능과 확률 정복하기 (Generative Model, Discriminative Model, Bayes Theorem)

기본 가정 (Input Data:X, Output Data: Y) 인공지능 모델에서 갖고 있는 데이터(input data)를 X, 추출하는 데이터(Output data)를 Y라고 한다. 인공지능 모델에서 우리는 P(X) X가 일어날 확률보다는 P(Y|X) X가 발생했을 때 output인 Y가 발생할 확률을 구하는 것을 목표로 한다. Bayes Theorem (베이즈 정리) 확률 이론이 여기서 왜 나오나 싶겠지만, 인공지능의 기반이 확률이기에 확률 및 통계는 빠질 수 없다. 특히 조건부 확률 이 글이 다룰 내용에서 많은 비중을 차지하기에 먼저 다루기로 한다. Bayes Theorem을 간략히 정리하면 사전 확률 (prior probability)를 이용하여 사후 확률(posterior probability..

아키엔지
'이론' 태그의 글 목록